
Package: relgam (via r-universe)
November 5, 2024

Type Package

Title Reluctant Generalized Additive Models

Version 1.1

Author Kenneth Tay, Robert Tibshirani

Maintainer Kenneth Tay <kjytay@stanford.edu>

Description A method for fitting the entire regularization path of the
reluctant generalized additive model (RGAM) for linear
regression, logistic, Poisson and Cox regression models. See
Tay, J. K., and Tibshirani, R., (2019) <arXiv:1912.01808> for
details.

URL https://arxiv.org/abs/1912.01808

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Imports glmnet, foreach

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

Repository https://kjytay.r-universe.dev

RemoteUrl https://github.com/kjytay/relgam

RemoteRef HEAD

RemoteSha 3d9fe7a9b48f6a6e26dd6e821264eecf9131cc44

Contents
cv.rgam . 2
getf . 4
makef . 5
myroc . 6
plot.cv.rgam . 7

1

https://arxiv.org/abs/1912.01808
https://arxiv.org/abs/1912.01808

2 cv.rgam

plot.rgam . 8
predict.cv.rgam . 9
predict.rgam . 10
print.cv.rgam . 11
print.rgam . 12
rgam . 13
summary.rgam . 16

Index 18

cv.rgam Cross-validation for reluctant generalized additive model (rgam)

Description

Does k-fold cross-validation for rgam.

Usage

cv.rgam(
x,
y,
lambda = NULL,
family = c("gaussian", "binomial", "poisson", "cox"),
offset = NULL,
init_nz,
gamma,
nfolds = 10,
foldid = NULL,
keep = FALSE,
parallel = FALSE,
verbose = TRUE,
...

)

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector.

y Response y as in rgam.

lambda A user-supplied lambda sequence. Typical usage is to have the program com-
pute its own lambda sequence; supplying a value of lambda overrides this.

family Response type. Either "gaussian" (default) for linear regression, "binomial"
for logistic regression, "poisson" for Poisson regression or "cox" for Cox re-
gression.

offset Offset vector as in rgam.

init_nz A vector specifying which features we must include when computing the non-
linear features. Default is to construct non-linear features for all given features.

cv.rgam 3

gamma Scale factor for non-linear features (vs. original features), to be between 0 and
1. Default is 0.8 if init_nz = c(), 0.6 otherwise.

nfolds Number of folds for CV (default is 10). Although nfolds can be as large as
the sample size (leave-one-out CV), it is not recommended for large datasets.
Smallest value allowable is nfolds = 4.

foldid An optional vector of values between 1 and nfolds identifying what fold each
observation is in. If supplied, nfolds can be missing.

keep If keep = TRUE, a prevalidated array is returned containing fitted values for each
observation at each value of lambda. This means these fits are computed with
this observation and the rest of its fold omitted. Default is FALSE.

parallel If TRUE, use parallel foreach to fit each fold. Must register parallel before
hand, such as doMC or others. Note that this also passes parallel = TRUE to
the rgam() call within each fold. Default is FALSE.

verbose Print information as model is being fit? Default is TRUE.

... Other arguments that can be passed to rgam.

Details

The function runs rgam nfolds+1 times; the first to get the lambda sequence, and then the remainder
to compute the fit with each of the folds omitted. The error is accumulated, and the average error
and standard deviation over the folds is computed.

Note that cv.rgam only does cross-validation for lambda but not for the degrees of freedom hyper-
parameter.

Value

An object of class "cv.rgam".

glmfit A fitted rgam object for the full data.

lambda The values of lambda used in the fits.

nzero_feat The number of non-zero features for the model glmfit.

nzero_lin The number of non-zero linear components for the model glmfit.

nzero_nonlin The number of non-zero non-linear components for the model glmfit.

fit.preval If keep=TRUE, this is the array of prevalidated fits.

cvm The mean cross-validated error: a vector of length length(lambda).

cvse Estimate of standard error of cvm.

cvlo Lower curve = cvm - cvsd.

cvup Upper curve = cvm + cvsd.

lambda.min The value of lambda that gives minimum cvm.

lambda.1se The largest value of lambda such that the CV error is within one standard error
of the minimum.

foldid If keep=TRUE, the fold assignments used.

name Name of error measurement used for CV.

call The call that produced this object.

4 getf

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)

cvfit <- cv.rgam(x, y)

specify number of folds
cvfit <- cv.rgam(x, y, nfolds = 5)

getf Get RGAM model component for one feature

Description

Returns the additive component of the RGAM model for a given feature at given data points, i.e.
f_j(X_j).

Usage

getf(object, x, j, index)

Arguments

object Fitted rgam object.

x Data for which we want the additive component. If x is a matrix, it assumed that
X_j is the jth column of this matrix. If x is a vector, it is assumed to be X_j
itself.

j The index of the original feature whose additive component we want.

index Index of lambda value for which plotting is desired. Default is the last lambda
value in object$lambda.

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)

fit <- rgam(x, y)

get the additive component for the feature 6, x as matrix
f6 <- getf(fit, x, 6) # last value of lambda
plot(x[, 6], f6)

makef 5

f6 <- getf(fit, x, 6, index = 20) # f1 at 20th value of lambda
plot(x[, 6], f6)

get the additive component for the feature 6, x as vector
new_x6 <- seq(-1, 1, length.out = 30)
new_f6 <- getf(fit, new_x6, 6) # last value of lambda
plot(new_x6, new_f6)

makef Make non-linear features

Description

Internal function for making non-linear features.

Usage

makef(x, r, df = 4, tol = 0.01, removeLin = T)

Arguments

x Input vector of length nobs.

r Vector of residuals.

df Degrees of freedom for the fit. Default is 4.

tol A tolerance for same-ness or uniqueness of the x values. To be passed to the
smooth.spline() function. Default is 0.01.

removeLin If TRUE (default), removes the linear component from the newly created non-
linear features.

Value

A list:

f Non-linear feature associated with x.

nl_predictor A function which, when given new data newx, returns the value of the non-linear
predictor at those x values. Needed for creating the non-linear features for new
data.

6 myroc

myroc Compute ROC and other performance measures for binomial model

Description

Given a vector of true outcomes and a vector of predictions, returns a list containing performance
measures.

Usage

myroc(ytest, rit, N = 100)

Arguments

ytest True test outcome: vector of 0s and 1s.

rit Predictions for the true outcome. Should be vector of continuous variables be-
tween 0 and 1.

N Number of breakpoints where we evaluate the performance measures. Default
is 100.

Details

We currently evaluate the performance measures at 100 quantiles of the predicted values; this can
be adjusted via the N option.

Value

A list of performance measures and intermediate computations.

sens Vector of sensitivity values.

spec Vector of specificity values.

ppv Vector of PPV values.

npv Vector of NPV values

area Area under ROC curve (AUC).

se Standard error for AUC.

cutp Cut points at which the performance measures were computed.

cutp.max Cut point which maximizes (sens + spec) / 2.

plot.cv.rgam 7

plot.cv.rgam Plot the cross-validation curve produced by "cv.rgam" object

Description

Plots the cross-validation curve produced by a cv.rgam object, along with upper and lower standard
deviation curves, as a function of the lambda values used. The plot also shows the number of non-
zero features picked for each value of lambda.

Usage

S3 method for class 'cv.rgam'
plot(x, sign.lambda = 1, ...)

Arguments

x Fitted "cv.rgam" object.

sign.lambda Either plot against log(lambda) (default) or -log(lambda) (if sign.lambda =
-1).

... Other graphical parameters to plot.

Details

A plot is produced and nothing is returned.

See Also

rgam and cv.rgam.

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)

cvfit <- cv.rgam(x, y)
plot(cvfit)

8 plot.rgam

plot.rgam Make a plot of rgam model fit

Description

Produces plots of the estimated functions for specified variables at a given value of lambda.

Usage

S3 method for class 'rgam'
plot(
x,
newx,
index,
which = NULL,
rugplot = TRUE,
grid_length = 100,
names,
...

)

Arguments

x Fitted rgam object.

newx Matrix of values of each predictor at which to plot.

index Index of lambda value for which plotting is desired. Default is the last lambda
value in x$lambda.

which Which features to plot. Default is the first 4 or nvars variables, whichever is
smaller.

rugplot If TRUE (default), adds a rugplot showing the values of x at the bottom of each
fitted function plot.

grid_length The number of points to evaluate the estimated function at. Default is 100.

names Vector of variable names of features in which. By default, name of the jth
variable is xj.

... Optional graphical parameters to plot.

Details

A plot of the specified fitted functions is produced. Nothing is returned.

Examples

set.seed(1)
n <- 100; p <- 12
x <- matrix(rnorm(n * p), n, p)

predict.cv.rgam 9

beta <- matrix(c(rep(2, 3), rep(0, 9)), ncol = 1)
y <- x %*% beta + x[, 4]^2 + rnorm(n)
fit <- rgam(x, y)

default: print functions for first 4 variables
opar <- par(mfrow = c(2, 2))
plot(fit, newx = x, index = 20)
par(opar)

print for variables 5 to 8
opar <- par(mfrow = c(2, 2))
plot(fit, newx = x, index = 20, which = 5:8)
par(opar)

predict.cv.rgam Make predictions from a "cv.rgam" object

Description

This function returns the predictions for a new data matrix from a cross-validated rgam model by
using the stored "glmfit" object and the optimal value chosen for lambda.

Usage

S3 method for class 'cv.rgam'
predict(object, xnew, s = c("lambda.1se", "lambda.min"), ...)

Arguments

object Fitted "cv.rgam" object.

xnew Matrix of new values for x at which predictions are to be made.

s Value of the penalty parameter lambda at which predictions are required. De-
fault is the value s="lambda.1se" stored in the CV fit. Alternatively, s="lambda.min"
can be used. If s is numeric, it is taken as the value(s) of lambda to be used.

... Other arguments to be passed to predict.rgam()).

Details

This function makes it easier to use the results of cross-validation to make a prediction.

Value

Predictions which the cross-validated model makes for xnew at the optimal value of lambda. Note
that the default is the "lambda.1se" for lambda, to make this function consistent with cv.glmnet in
the glmnet package.

The output depends on the ... argument which is passed on to the predict method for rgam objects.

10 predict.rgam

See Also

cv.rgam and predict.rgam.

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)
cvfit <- cv.rgam(x, y)

predictions at the lambda.1se value
predict(cvfit, xnew = x[1:5,])

predictions at the lambda.min value
predict(cvfit, xnew = x[1:5,], s = "lambda.min")

predictions at specific lambda value
predict(cvfit, xnew = x[1:5,], s = 0.1)

probability predictions for binomial family
bin_y <- ifelse(y > 0, 1, 0)
cvfit2 <- cv.rgam(x, bin_y, family = "binomial")
predict(cvfit2, xnew = x[1:5,], type = "response", s = "lambda.min")

predict.rgam Make predictions from a "rgam" object

Description

This function returns the predictions from a "rgam" object for a new data matrix.

Usage

S3 method for class 'rgam'
predict(object, xnew, ...)

Arguments

object Fitted "rgam" object.

xnew Matrix of new values for x at which predictions are to be made.

... Any other arguments to be passed to predict.glmnet().

print.cv.rgam 11

Value

Predictions of which the model object makes at xnew. The type of predictions depends on whether
a type argument is passed. By default it givs the linear predictors for the regression model.

If an offset is used in the fit, then one must be supplied via the newoffset option.

See Also

rgam.

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)
fit <- rgam(x, y)

predict for full lambda path
predict(fit, xnew = x[1:5,])

predict for specific lambda values
predict(fit, xnew = x[1:5,], s = 0.1)

predictions for binomial family
bin_y <- ifelse(y > 0, 1, 0)
fit2 <- rgam(x, bin_y, family = "binomial")
linear predictors
predict(fit2, xnew = x[1:5,], s = 0.05)
probabilities
predict(fit2, xnew = x[1:5,], type = "response", s = 0.05)

print.cv.rgam Print a cross-validated rgam object

Description

Print a summary of the results of cross-validation for a RGAM model.

Usage

S3 method for class 'cv.rgam'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x Fitted rgam object.
digits Significant digits in printout.
... Additional print arguments.

12 print.rgam

Details

The call that produced the object x is printed, followed by some information on the performance for
lambda.min and lambda.1se.

See Also

cv.rgam, print.rgam.

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)
cvfit <- cv.rgam(x, y)
print(cvfit)

print.rgam Print a rgam object

Description

Print a summary of the rgam path at each step along the path.

Usage

S3 method for class 'rgam'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x Fitted rgam object.

digits Significant digits in printout.

... Additional print arguments.

Details

The call that produced the object x is printed, followed by a five-column matrix with columns
NonZero, Lin, NonLin, columns say how many nonzero, linear and nonlinear terms there are. the
percent deviance explained (relative to the null deviance).

Value

The matrix above is silently returned.

rgam 13

See Also

rgam.

Examples

set.seed(1)
n <- 100; p <- 12
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 3), rep(0, 9)), ncol = 1)
y <- x %*% beta + x[, 4]^2 + rnorm(n)
fit <- rgam(x, y)
print(fit)

rgam Fit reluctant generalized additive model

Description

Fits a reluctant generalized additive model (RGAM) for an entire regularization path indexed by the
parameter lambda. Fits linear, logistic, Poisson and Cox regression models. RGAM is a three-step
algorithm: Step 1 fits the lasso and computes residuals, Step 2 constructs the non-linear features,
and Step 3 fits a lasso of the response on both the linear and non-linear features.

Usage

rgam(
x,
y,
lambda = NULL,
lambda.min.ratio = ifelse(nrow(x) < ncol(x), 0.01, 1e-04),
standardize = TRUE,
nl_maker = relgam:::makef,
family = c("gaussian", "binomial", "poisson", "cox"),
offset = NULL,
init_nz,
nfolds = 5,
foldid = NULL,
gamma,
parallel = FALSE,
verbose = TRUE,
...

)

14 rgam

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector.

y Response variable. Quantitative for family = "gaussian" or family = "poisson"
(non-negative counts). For family="binomial", should be a numeric vector
consisting of 0s and 1s. For family="cox", y should be a two-column matrix
with columns named ’time’ and ’status’. The latter is a binary variable, with ’1’
indicating death, and ’0’ indicating right-censored.

lambda A user-supplied lambda sequence. Typical usage is to have the program com-
pute its own lambda sequence; supplying a value of lambda overrides this.

lambda.min.ratio

Smallest value for lambda as a fraction of the largest lambda value. The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is
0.01.

standardize If TRUE (default), the columns of the input matrix are standardized before the
algorithm is run. See details section for more information.

nl_maker This is a function that takes in one feature x and one response r and fits a model
of r on x. It returns a list of two items: (i) f which is a vector of fitted val-
ues, and (ii) a function nl_predictor which returns the fit for a given newx
value. Additional arguments for nl_maker can be passed via The default
is relgam::makef, which fits a smoothing spline with a user-specified degrees
of freedom.

family Response type. Either "gaussian" (default) for linear regression, "binomial"
for logistic regression, "poisson" for Poisson regression or "cox" for Cox re-
gression.

offset A vector of length nobs. Useful for the "poisson" family (e.g. log of exposure
time), or for refining a model by starting at a current fit. Default is NULL. If
supplied, then values must also be supplied to the predict function.

init_nz A vector specifying which features we must include when computing the non-
linear features. Default is to construct non-linear features for all given features.

nfolds Number of folds for CV in Step 1 (default is 5). Although nfolds can be as
large as the sample size (leave-one-out CV), it is not recommended for large
datasets. Smallest value allowable is nfolds = 3.

foldid An optional vector of values between 1 and nfolds identifying what fold each
observation is in. If supplied, nfolds can be missing.

gamma Scale factor for non-linear features (vs. original features), to be between 0 and
1. Default is 0.8 if init_nz = c(), 0.6 otherwise.

parallel If TRUE, the cv.glmnet() call in Step 1 is parallelized. Must register parallel
before hand, such as doMC or others. Default is FALSE.

verbose If TRUE (default), model-fitting is tracked with a progress bar.

... Any additional arguments to be the non-linear fitter in Step 2.

rgam 15

Details

If there are variables which the user definitely wants to compute non-linear versions for in Step 2 of
the algorithm, they can be specified as a vector for the init_nz option. The algorithm will compute
non-linear versions for these features as well as the features suggested by Step 1 of the algorithm.

If standardize = TRUE, the standard deviation of the linear and non-linear features would be 1 and
gamma respectively. If standardize = FALSE, linear features will remain on their original scale
while non-linear features would have standard deviation gamma times the mean standard deviation
of the linear features.

For family="gaussian", rgam standardizes y to have unit variance (using 1/n rather than 1/(n-1)
formula).

Value

An object of class "rgam".

full_glmfit The glmnet object resulting from Step 3: fitting a glmnet model for the response
against the linear & non-linear features.

nl_predictor List of functions used to get the non-linear features for new data. For internal
use only.

init_nz Column indices for the features which we allow to have non-linear relationship
with the response.

step1_nz Indices of features which CV in Step 1 chose.

mxf Means of the features (both linear and non-linear).

sxf Scale factors of the features (both linear and non-linear).

feat Column indices of the non-zero features for each value of lambda.

linfeat Column indices of the non-zero linear components for each value of lambda.

nonlinfeat Column indices of the non-zero non-linear components for each value of lambda.

nzero_feat The number of non-zero features for each value of lambda.

nzero_lin The number of non-zero linear components for each value of lambda.

nzero_nonlin The number of non-zero non-linear components for each value of lambda.

lambda The actual sequence of lambda values used.

p The number of features in the original data matrix.

family Response type.

call The call that produced this object.

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)

fit <- rgam(x, y)

16 summary.rgam

construct non-linear features for only those selected by Step 1
fit <- rgam(x, y, init_nz = c())

specify scale factor gamma and degrees of freedom
fit <- rgam(x, y, gamma = 1, df = 6)

binomial family
bin_y <- ifelse(y > 0, 1, 0)
fit2 <- rgam(x, bin_y, family = "binomial")

Poisson family
poi_y <- rpois(n, exp(x %*% beta))
fit3 <- rgam(x, poi_y, family = "poisson")
Poisson with offset
offset <- rnorm(n)
fit3 <- rgam(x, poi_y, family = "poisson", offset = offset)

summary.rgam rgam summary routine

Description

Makes a two-panel plot of the rgam object showing coefficient paths.

Usage

S3 method for class 'rgam'
summary(object, label = FALSE, index = NULL, which = NULL, ...)

Arguments

object Fitted rgam object.

label If TRUE, annotate the plot with variable labels. Default is FALSE.

index The indices of the lambda hyperparameter which we want the plot for. The
default is to plot for the entire lambda path.

which Which values to plot. Default is all variables.

... Additional arguments to summary.

Details

A two panel plot is produced, that summarizes the linear components and the nonlinear components,
as a function of lambda. For the linear components, it is the coefficient for each variable. For the
nonlinear components, it is the coefficient of the non-linear variable. Nothing is returned.

summary.rgam 17

Examples

set.seed(1)
n <- 100; p <- 20
x <- matrix(rnorm(n * p), n, p)
beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1)
y <- x %*% beta + rnorm(n)

fit <- rgam(x, y)
opar <- par(mfrow = c(1, 2))
summary(fit)
par(opar)

with labels, just variables 1 to 5
opar <- par(mfrow = c(1, 2))
summary(fit, label = TRUE, which = 1:5)
par(opar)

as above, but just the first 30 values of lambda
opar <- par(mfrow = c(1, 2))
summary(fit, label = TRUE, which = 1:5, index = 1:30)
par(opar)

Index

cv.rgam, 2, 7, 10, 12

getf, 4

makef, 5
myroc, 6

plot.cv.rgam, 7
plot.rgam, 8
predict.cv.rgam, 9
predict.rgam, 10, 10
print.cv.rgam, 11
print.rgam, 12, 12

rgam, 7, 11, 13, 13

summary.rgam, 16

18

	cv.rgam
	getf
	makef
	myroc
	plot.cv.rgam
	plot.rgam
	predict.cv.rgam
	predict.rgam
	print.cv.rgam
	print.rgam
	rgam
	summary.rgam
	Index

